THE FUTURE OF MECHANIZATION IN OIL PALM PLANTATIONS (A MALAYSIAN EXPERIENCE)

Ir. Ooi Ho Seng & Ir. Kumar Subramaniam
SGT Konsult Sdn Bhd
Introduction

Malaysia is 2nd largest producer & exporter of palm oil in the world. Indonesia is still the market leader

(Source: MPOB, 2018)
Oil Palm Planted Area in 2017

- **Malaysia**: 5.81 Mn Ha
- **Matured**: 5.11 Mn Ha (88%)
- **Immature**: 0.70 Mn Ha (12%)
- Up 1.28% (2016: 5.74 Mn Ha)

(Source: MPOB, 2018)
Performance of Palm Oil Industry

(Source: MPOB, 2018)
Note: p = preliminary; r = revised

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planted Area (Mn ha)</td>
<td>5.81</td>
<td>5.74</td>
</tr>
<tr>
<td>CPO Production (Mn T)</td>
<td>19.92</td>
<td>17.32</td>
</tr>
<tr>
<td>FFB Yield (T/ha)</td>
<td>17.89</td>
<td>15.91</td>
</tr>
<tr>
<td>Oil Extraction Rate (%)</td>
<td>19.72</td>
<td>20.18</td>
</tr>
<tr>
<td>PO Imports (Mn T)</td>
<td>0.56</td>
<td>0.42</td>
</tr>
<tr>
<td>PO Exports (Mn T)</td>
<td>16.56</td>
<td>16.05</td>
</tr>
<tr>
<td>Closing Stocks (Mn T)</td>
<td>2.73</td>
<td>1.67</td>
</tr>
<tr>
<td>CPO Price (RM/T)</td>
<td>2,783.00</td>
<td>2,653.00</td>
</tr>
<tr>
<td>Export Revenue * (RM Bn)</td>
<td>78.00 (p)</td>
<td>67.92 (r)</td>
</tr>
</tbody>
</table>
Oil Palm Planted Area by Category in 2017

Private Estates 3.54 Mn Ha (61.0%)

State Agencies 0.35 Mn Ha (6.0%)
RISDA 0.07 Mn Ha (1.2%)
FELCRA 0.17 Mn Ha (2.9%)
FELDA 0.70 Mn Ha (12.1%)
Independent Smallholders 0.98 Mn Ha (16.9%)

Total Planted Area = 5.81 Mn Ha

(Source: MPOB, 2018)
<table>
<thead>
<tr>
<th>Categories of Growers</th>
<th>Total Planted Area (Million ha)</th>
<th>Categories of Mills</th>
<th>Percent of Milling Capacity</th>
<th>Current Field Mechanization Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Smallholders</td>
<td>0.98</td>
<td>190 Independent mills</td>
<td>41%</td>
<td>Harvesting tools (Al. pole, knives & chisels), knapsack sprayer, wheelbarrow, trailer, motorized cutter</td>
</tr>
<tr>
<td>Organized Smallholders</td>
<td>0.94</td>
<td>105 government related mills</td>
<td>22%</td>
<td>Harvesting tools, Knapsack sprayer, wheelbarrow, motorized cutter, tractor mounted implements & trailer, mainline loading & transport</td>
</tr>
<tr>
<td>State Companies</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Companies</td>
<td>3.54</td>
<td>170 estate mills</td>
<td>37%</td>
<td>As above plus conducting R&D on potential technologies</td>
</tr>
<tr>
<td>Total</td>
<td>5.81</td>
<td>465 mills</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
FIELD MECHANIZATION TECHNOLOGIES DEVELOPED BY MPOB
(An Introduction to Improvements Made on Conventional Systems)
Harvesting Technologies (MPOB)

Motorized Cutter
(MPOB TT No.180)
• For cutting FFB at 2-5 meters.

Specifications:
• Engine: 1.3 hp petrol, 2-3 strokes
• Weight: 7.2 kg
• Length of pole: 3.6 (telescopic)
• Petrol: 0.15 liter/hour
• Cutting edge: C-shaped crescent with safety casing

Productivity:
• 700-1000 bunches a day
• Labor reduction = 2-3 person.

https://www.youtube.com/watch?v=qh9TP0Vzc1k
Motorized Chisel
(MPOB TT No.409)
• It uses chisel tool to cut the palm oil bunches and prune the leaves of palm trees of <2 meters

Specifications:
• Engine: petrol (2 strokes)
• Displacement: 25.4cc
• Weight: 5.0 kg
• Length: 1.5m

Productivity:
• 80 bunches per hour / person
Harvesting Technologies (MPOB)

Mechanical Harvester
(MPOB TT No.217)
- Harvests FFB at height 6-10 m
- Cuts, carries and unloads FFB to the roadside.

Specifications:
- Engine: 31.5 hp water cooled
- Moving speed: 4km/hour
- Slope ability: 30° or less
- Cutting height: 6m-10m
- Maximum load: 500kg

Productivity:
4–6 ton FFB/day and 80-100 hectares/machine
In-field Transportation (MPOB)

Compact Transporter
(MPOB TT No.316)
- It transports bunches along narrow terrain areas

Specifications:
- Dimension: 1.8m X1.2 M
- Tyre size: 2.25-17
- Weight: 40kg
- Maximum load: 250kg
- Motorcycle capacity: 70 cc

Productivity:
- 3-5 ton FFB/day
The Grabber
(MPOB TT No.3)
- The arm is mounted on the tractor and it uses a three-blade clamp to grab/hold the bunch.

Specifications:
- Mini tractor 25-35 hp
- 3-blades clamp on mechanical sleeve.

Productivity:
- 20-30 ton FFB/day
Loose Fruitlets Collector (MPOB TT No.57)

- The suction mechanism is installed on the three-wheeler to suck in the loose fruitlets

Specifications:
- Engine: 6hp diesel- air cooled
- Holding capacity: 30kg
- Dimensions: 2270 x 1160 x 750mm

Productivity:
- 1400kg-1700kg / day (3 labors)
Loose Fruitlets Collection (MPOB)

Loose Fruitlets Collector
(MPOB TT No.419)

• By pushing the collector wheel, the fruitlets enter through the flexible crevices of the rod.

Productivity:
• 30-60 kg of palm fruitlets collected per working hour depends on the soil surface
Loose Fruitlets Collection (MPOB)

Loose Fruitlets Separator
(MPOB TT No.257)
- It separates fruitlets from the garbage and can be operated as a moving or stationary unit.

Specifications:
- Engine: 6hp diesel- air cooled
- Dimension: 2800 X1100 X1600mm
- Fan: twin type 6 blades (1600rpm)
- Wind velocity: 10 m/s

Productivity:
- 1 ton /hour
- 97% clean
Motorized Injector (MPOB)

Motorized Injector.
(MPOB TT No.215)
- A tool for injecting liquids or chemicals into the palm stem e.g. to control Ganoderma

Specifications:
- Drill bit: 10 mm diameter
- Injector nozzle: 12 mm Diameter; 250mm Length
- Power: 1) hydraulic (tractor) and 2) petrol engine

Productivity:
- 40-50 trees/day
CURRENT MECHANISATION PRACTICES IN OIL PALM PLANTATIONS
Mechanization in Oil Palm Plantations

- Usage of machines & implements (adapted to local terrain conditions) depends on:
 - Land size
 - Terrain conditions
 - Management preferences
 - Economic returns

- Approach varies from plantation to plantation

- Focus is on Infield transportation of FFB

(Source: Rahim et al.. MPOB, 2010)
Oil Palm Harvesting

The harvesting operations comprise:

- Cutting fronds and ripe bunches
- Rearrange & stacking fronds and trim bunch stalk
- Collecting harvested bunches and loose fruitlets
- Transport bunches to hopper or mill

(Source: Kulim (M) Berhad, 2012)
Harvesting Operations (Both Manual and Mechanized)

(Source: Kulim (M) Berhad, 2012)
Mechanized Cutting Operation

- Motorized cutters developed by MPOB are widely used

(Source: Kulim (M) Berhad, 2012)
• Machines evaluated so far were unsuitable

(Source: Kulim (M) Berhad, 2012)
Collection of Loose Fruitlets

- Machines developed were not adopted

(Source: Kulim (M) Berhad, 2012)
In Field Transportation

- Technologies are matured.
- Selection is based on:
 a) Types of work,
 b) Terrains,
 c) Productivity,
 d) Machine CapEx & OpEx

(Source: Kulim (M) Berhad, 2012)
Mechanization in Mainline Loading & Transport

tested and proven...

(Source: Kulim (M) Berhad, 2012)
United Plantations: Leader in Mechanization
United Plantations: Leader in Mechanization

Manual + sprinkler

Spear drenching

Weedicide application

Trunk injection
Mechanization at Sime Darby Plantation

Skilled workers + Machines + System = Productivity & Less labor

(Source: Sime Darby 2012)
Mechanization at Sime Darby Plantation

Productivity between 15–20 ha per day

(Source: Sime Darby 2012)
Mechanization at Sime Darby Plantation

Skilled workers + Machines + System = Productivity & Less labor

(Source: Sime Darby 2012)
THE FUTURE IN OIL PALM MECHANISATION
Objectives to Migrate from Conventional Mechanization to Modern / Robotic Assisted Mechanization System

- Overall reduction of labor usage and to break away labor dependent operations.
- To improve and enhance skills of labors in the industries to increase individual output and overall reduction of production cost.
- To reduce number of equipment and mechanization tools (conventional) which will reduce upkeep cost and costly inventory in the long run.
- To reduce flood incidents within the plantation which reduces the effectiveness of mechanization system within the plantation.
- To increase effectiveness of fertilizer application and reduce wastage / application cost.
- To increase effectiveness of pest and disease control operations within the plantation.
Objectives to Migrate from Conventional Mechanization to Modern / Robotic Assisted Mechanization System

- To increase quality of plantation produce delivered to processing plant in terms of freshness and ripeness
- To reduce dependency on fossil fuel run plantation machinery, in big numbers
- To reduce hard labor and improve skill level of labor force
- To standardize plantation activities and to produce constant desired results
- To create effective control over plantation activities
- Overall to improve production activities with minimized cost with the help of modern technology and break away from hard labor dependency
- To create good will among the plantation community and the environment
1) Precision Planting

• Excellent opportunity for precision farming making full use of remote sensing and DEM.
• Auto-count palm oil plants
• Create density maps that (reveals uneven planting)
• Overlay with soil type maps
• Improve implementation mechanization system in the field
• Improves maintenance of infrastructure and upkeep cost of the facilities
• Provide value for plantations besides speeding up the processes of tree counting to forecasting yields
• Drone technologies can generate precise locations to eliminate empty spots. (More density, more yield result)
Advantages of Drone in Palm Oil Planting

• Provide precise terracing; calculates accurately the volume of trees and estimates their heights.

• Designing plantation land:
 i. able to create digital elevation models in 3D and clear view of slopes and contours before starting the earth works
 ii. Company tablet equipped with GPS in bulldozers and easy terracing cab be done (speeds up the process + 5% more trees can be planted on the hills)

RESULT:

➢ Organized terrain for higher planting density for peat soil (162 palms per ha) and shallower soils (146 palms per ha). Thus it improves the total output of FFB from a particular planted area with reduce cost of operations.
2) Precision Irrigation

- Excellent opportunity for digital elevation maps (DEM)
- Determine the flow of water
- Identify areas prone to floods
- Map out the drainage area
- Redesign FFB harvesting and increase output

RESULT:

- Conventional plantation design and upkeep can be drastically improved and made more productive with the use of modern technologies such as the drone usage.

- Redesign irrigation & drainage system to feed into areas most prone to dry spells and low FFB yield. Research has shown that yields can be increased by 20% by improving irrigation in areas prone to dry spells. Rainfall can be stored in basins for later use.
3) Track & Manage Diseases

- Ganoderma and Rhino Beetles affect large proportions of plantations and cause reduced FFB yields
- Aerial Normalized Difference Vegetation Index (NDVI) can be used to monitor:
 - State of plants
 - Plants in distress
- Timely identifying affected plants and managing diseased zones is crucial:
 - Isolation trenching, ploughing, clearing, burning and fallowing
- Determine exact locations of affected areas with a “click of a mouse”
- Deploy ground teams for closer inspection
- Infected tree detections, enable more targeted treatment instead of mass spraying

RESULT:
- Disease spreading is under control, damage is reduced and yield is increased
Advantages of Drone in Palm Oil Planting

4) Precision Fertilization

- 60% to 70% of cost in growing Palm Oil FFB is related to fertilizers
- Aerial NDVI can be used to monitor:
 - State of plants
 - State of growth (size and healthy status)
 - Identify dry plants or plants in distress
- Focusing on area of reduced growth in order to maximize efficiency of fertilization
- Determine exact locations of fertilization areas using the web portal
- Pesticide/ fertilizer spraying - Spraying of 1 hectare can be done in 20 minutes, 100 times faster than trunk injections
- Improved application efficiency
- Redesign fertilizer application process
- Reduced manpower

RESULT:
- Significant decrease in fertilizer/nutrient capital and application costs
Tree Counting and Soil Types
Segregation

Tree counting

Plant according to soil types

Create density map
Advantages of Drone Usage in the Plantation

- Digital elevation map
- Identify flood prone area
- Redesign irrigation activities
Increase Output With Usage of Drone
Instant Advantages of Using Drones in the Oil Palm Plantation

Fertilization spraying using drone
Frontier Mechanization by Sime Darby Plantation – Sharing Experience

• The world’s biggest publicly listed palm-oil producer undertakes joint mechanization R&D with MPOB, UPM, etc.:
 ➢ To improve productivity with less labor force
 ➢ To ease field work,
 ➢ To improve plantation activities efficiency
 ➢ To improve labor performance
 ➢ To harness skills & competency with technology

• Sime Darby Plantation VISION 2025 - Video
FFB Grabber-Loader
(R&D with MPOB)

In-field machinery paths and engineering infrastructure are required
Loose Fruitlets Collector-Loader (R&D with MPOB)

In-field machinery paths and engineering infrastructure are required
Using Drone in Field Operations (R&D with Univ. Putra Malaysia)

GPS, GIS and IoT equipment / facilities are required
Auto Guided Oil Palm Planter by using multi-GNSS – R&D by UPM

The 5 steps in Multi-GNSS (Global Navigation Satellite System)

• Design planting pattern
• Determine boundary coordinate of planting area
• Geo-reference with ArcGIS
• Stakeout process with Tracy software
• Marking location with wooden spikes.

It took one person 290 minutes to complete 70m x 50m planting area – i.e. 25 minutes faster than using GPS.
Oil Palm Precision Farming
(R&D by AA Resources)

The 5 core activities of Precision Farming (PF):
• Measuring variability
• Analyzing variability
• Decision-making
• Differential actions
• Assessment of results

Tools & technologies associated with PF have been widely utilized. Data loggers, yield monitors, GPS, sensors etc. are fitted on the machines for data collection.
Benefits of Precision Farming

<table>
<thead>
<tr>
<th>ENSURES:</th>
<th>RESULTS IN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient & precise application of chemicals & inputs to fertilize the</td>
<td>• Improved productivity & product quality</td>
</tr>
<tr>
<td>plant and to protect the crop from weeds and pests - i.e. right rates,</td>
<td>• Reduced wastages due to efficient application</td>
</tr>
<tr>
<td>right places, right timing of applications & done very efficiently</td>
<td>of inputs</td>
</tr>
<tr>
<td></td>
<td>• Minimal environmental pollution</td>
</tr>
<tr>
<td></td>
<td>• Energy conservation</td>
</tr>
</tbody>
</table>
Oil Palm Precision Farming (Findings by AA Resources)

PF hinges on:
- Advent of information technology (A.I.)
- Affordability of GPS, sensors, yield monitors
- Agronomic knowledge of the crop
- Management strategy and system

Applicability of PF depends on success of mechanization of field operations and on attitude & readiness of management to change
Digitalization of Estate Operations
(R&D by IJM Plantations)

- Connecting mobile phones with cloud data storage & Internet of Things (IoT)
- Managers obtain real-time data from workers regarding field & crop conditions... for decision making & timely action
- Data on the harvesters’ FFB collection is uploaded to computer at estate’s office for payment (using Near Field Communication technology)
Summary of Findings

• Application of robots and automation to a variety of field operations is possible. But cost effective technologies are yet to be made commercially viable.

• REASON is that robots are unable to operate efficiently and cost-effectively in unstructured, continuously changing conditions & environments

• Need to design and construct Weather Proof infield engineering infrastructures & supporting systems to facilitate efficient mechanization, automation & robotic technologies to be applied
Realistic Future In Mechanization

• Develop Mechanization Packages based on Field Conditions & Infrastructures
• Design, construct and maintain weather-proof field Infrastructures to facilitate efficient mechanization
• Adopt and adapt appropriate automation & robotic technologies to replace the mechanization systems
FUTURE MECHANISATION OF FFB HARVESTING
Selection of Harvesting Systems

- **H1**: Infield FFB collection by wheelbarrows
 > 60% of the fields are inaccessible to infield machine i.e. narrow/hanging terraces, very hilly & large ravines.

- **H2**: Infield FFB collection by Mechanical Buffalo (MB)
 > 60% of the fields are wide terraced & accessible by MB

- **H3**: Infield FFB collection by MTG (Mini Tractor/Grabber)
 > 60% of the fields are flat/undulating & accessible by MTG

Note:
One Harvesting System is applicable in
a) Contiguous block.
b) Economies of scale: minimum H2 = 500ha & H3 = 1000ha
Established Work Methods

Division of Labor (D.O.L) & Division of Earnings (D.O.E)

<table>
<thead>
<tr>
<th>System</th>
<th>Function</th>
<th>Code</th>
<th>DOL (Duties)</th>
<th>Ratio/Cutter</th>
<th>DOE</th>
<th>TPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (Manual – C1R2)</td>
<td>Cutter</td>
<td>C1</td>
<td>Cut FFB and subtending fronds</td>
<td>1.0</td>
<td>35%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Carrier 1</td>
<td>R1</td>
<td>Stack Fronds, trims bunch stalks, collects FFB & LF to platform</td>
<td>1.0</td>
<td>32.5%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Carrier 2</td>
<td>R2</td>
<td>Stack Fronds, trims bunch stalks, collects FFB & LF to platform</td>
<td>1.0</td>
<td>32.5%</td>
<td>25%</td>
</tr>
<tr>
<td>H2 (Infield by Mechanical Buffalo)</td>
<td>Cutter</td>
<td>QC</td>
<td>Cut FFB and subtending fronds</td>
<td>1.0</td>
<td>35%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Frond Stacker</td>
<td>QF</td>
<td>Stack Fronds, trims bunch stalks & align FFB</td>
<td>0.5</td>
<td>14%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Picker</td>
<td>QL</td>
<td>Collects LF in G-Bags & brings to platform</td>
<td>1.0</td>
<td>29%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Machine Operator</td>
<td>QM</td>
<td>Collects FFB & unload into 3 mt bins at roadside</td>
<td>0.5</td>
<td>20%</td>
<td>-</td>
</tr>
<tr>
<td>H3 (Mini tractor with or withoutGrabber)</td>
<td>Cutter</td>
<td>QC</td>
<td>Cut FFB and subtending fronds</td>
<td>1.0</td>
<td>35%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Frond Stacker</td>
<td>QF</td>
<td>Stacks Fronds, trims bunch stalks & align FFB</td>
<td>0.5</td>
<td>14%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Picker</td>
<td>QL</td>
<td>Collects LF in G-Bags & brings to platform</td>
<td>1.0</td>
<td>29%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Machine Operator</td>
<td>QG</td>
<td>Collects FFB & unloads into 3mt or 10mt bins at roadside</td>
<td>0.25</td>
<td>12%</td>
<td>-</td>
</tr>
</tbody>
</table>
Targets

- **To complete** harvesting operations for each block in **10 days cycle**.
- To **maintain** harvesting intervals within 10 days and below throughout the year.
- To improve harvesting operations **efficiencies**.
- To reduce future harvesting interval to 7 days or less to reduce cost of loose fruitlets collection.

Comment:
- Due to labor shortage, current practices in Malaysia is 15 days harvesting interval and harvesting about 24 ton FFB a year (0.5 ton FFB harvested in a hectare per round) which makes mechanization an important aspect in increasing output and quality.
Task allocation and movement of harvesters:-

- **Ownership**

- **Quality monitoring / Traceability**

- **Supervision** – **Structured Block Supervision System**.

- **Basis on payment of piece rate works. Eg: pruning, circle raking.**

- **Zero Balance concept**.
How it works?

- 120 to 160 palms per task
- Coastal (Flat) = 4/6 rows per task
- Inland (terrace) = 6 rows per task
- Tasks is fixed to the cutter and roll-on to other categories
- All tasks must be numbered.
- If possible indicate task owner, number of palm and arrow for harvesting movement at the task marker.
- On flat area, one person can cut and carry up to 3.5 ha a day (i.e. up to 2.0 ton FFB a day). If he cuts only, he can cover up to 6 ha a day (i.e. up to 3.5 ton FFB a day).
What are the Benefits??

- Enhance supervision – work and crop quality
- Saving in workers transportation – travelling between task nearer.
- Increase productivity – no waiting and wastage on travelling time.
- Better crop evacuation – crop evacuation more focus to the completed rows to facilitate delivery within 24 hours to the mill to maintain FFA levels at below 3% (for good quality CPO).

Tasking in Inland Area.

- In inland area, same concept can be applied.
- On terrace area, steepness of terrain and length of terrace need to be taken into consideration in the task allocation.
- Movement of harvesters must be properly organized to ensure better crop evacuation can be carried out.
- All broken terraces must be connected and high embankment (if any) from road to terraces must be leveled to avoid any issues in harvesting operations.
Harvesting Processes & Work Methods
- Migration from Conventional to H1, H2 & H3 Systems

Conventional Process for evacuation & transportation of FFB to Mill

1. Infield evacuation of FFB by wheelbarrow to platform
2. Manual loading from platform to tractor/trailer
3. Unload FFB into 3 or 10 ton bin
4. FFB transported by contract lorry to Mill

Mechanized Process – integration of infield machine with mainline for speedier evacuation and transportation of FFB to the Mill

1. Infield evacuation of FFB by machine
2. Unload FFB into 3 or 10 ton bin
3. Haulage of 10-ton bin by contract lorry to mill
H1 System

Hilly & Terraced Mature Areas.

QC – Cut bunches

QC – Cut bunches (sickle)

R1 & R2 – Collect LF. / Stack fronds. trim stalk / bring bunches to platform using wheelbarrow

Platform loading manual / using 3.5m grabber - compact tractor

Unloading FFB into 10t bin

FFB lorry – cw hooklift will load the 10t bin from bin station

10t Bin – Weigh at estate weighbridge

POM
H2 System
Terraced / Undulating Mature Areas (Inland)

QC - Cut bunches
QF - stack the fronds / align FFB
QM - Collect the bunches
QL - Collect and bag LF
QM - Unload FFB into 3t Bin

Compact Tr. Cw.4t hooklift / Scissor lift - from 3t bin station
Compact Tr. – unload FFB into 10t bin
FFB lorry – cw hooklift will load the 10t bin from bin station
10t Bin – Weigh at estate weighbridge

POM
H3 System (Coastal)
Mini Tractor c/w 2.8m Grabber/1.0Ton Scissor Lift Trailer
Flat/Undulating Mature Areas (Two-Tier)

QC - Cut bunches
QF - stack the fronds / align FFB
QG - Collect the bunches.
QL - Collect and bag LF
QG – Unload FFB into 3t Bin

Compact Tr. Cw.4t hooklift / Scissor lift - from 3t bin station
Compact Tr. – unload FFB into 10t bin
FFB lorry – cw hooklift will load the 10t bin from bin station
10t Bin – Weigh at estate weighbridge

POM
Pre-requisites of Bins station

- **Factors to be considered**
 - Harvesting / Evacuation systems
 - Crop Projection
 - Bins requirement
 - Bins ratio (Hooklift : 1 / Mini-Bins : 5)

i. **Mini bin**
 1) Marking (Approximately 5 ha/3mt bin) / 120-150m apart
 2) Bin parking site preparation

ii. **8/10 mt bin**
 1) Marking (Approximately 10-15 ha/bin, depends on yield)
 2) Bin parking site preparation
 3) Upgrading A road, widening turning point, upgrade bridges/culvert
 4) Traffic signage – fix additional/appropriate signage.
Roads and FFB Bin Placement Points

- B ROAD
- Collection Drain
 - 3mt Bin
 - 10mt Bin
- C ROAD
- Collection Drain
 - 10mt Bin
- 500 m
- 5m
BIN PLACEMENT – 3 TON
Example of Good / Bad Practices in the Estates

Unsafe and bad road upkeep

Good and effective upkeep
Unsafe Roads

Unproductive hours

Bad upkeep
Good Water Management Practices in the estate (coastal)

- Good Drainage – to prevent crop loss due to flooding.
- Irrigation.

Yard sticks to monitor water levels

Flood pumps to irrigate the fields
Management of Field Drainage is critical for Mechanization

- Tractor with twin tyres
- And
- Spacer

Dondi-ditcher
Operator’s and workers Safety

Unsafe act..

Unsafe tractor

Safe tractor
Good ‘A’ road

Good ‘B’ road

All weather motorable roads
Conclusion

• Future in Mechanization is about the development of Mechanization Packages and machinery systems that are based on Field Conditions & Infrastructures as well as on workers’ productivity (income) and crop quality

• It is about the design, construction and maintenance of weather-proof field Infrastructures for safe and efficient mechanization

• Option to create field conditions to suit mechanization usage from the start, could be just very costly in terms of terrain preparations.

• Dependency on hard labor and fossil fuel run machinery must be reduced to maintain sustainable plantations operations.
Conclusion

- Plantations operations must develop a good control over deteriorating weather conditions by utilizing robotic technologies.

- It is about the adoption & adaptation of automation & robotic technologies into the machinery systems to enhance the mechanization packages to increase output, improve quality, improve of safety operations, install food safety, reduce hard labor and reduce production cost.

- Future mechanization plans must also consider environmental issues to achieve sustainable growth and acceptance of the same technologies.
Last But Not Least..

- The drone usage and robotic infusion is also taking place in the palm oil mill construction with many added benefits.
- The details can be discussed in a another forum…

![Images of construction site with drone usage and robotic infusion.]
Last But Not Least..
Last But Not Least..
Acknowledgement

Our sincere thank you note to the following organizations:

• Fedepalma / Cenepalma
• Sime Darby
• MPOB
• AA Resources
• Kulim (M) Berhad
• UPM
• Sime Darby Plantation
• IJM Plantations
THANK YOU